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We have carried out extensive molecular dynamics simulations of self-avoiding tethered mem-
branes embedded in four- and five-dimensional space. These calculations were performed for a wide
range of effective hard-core diameters in order to determine whether or not a crumpling transition
exists. We find, in agreement with previous work, that self-avoiding tethered membranes are always

flat in d = 4 and crumpled in d = 5.

PACS number(s): 05.70.Fh, 36.20.Ey, 64.60.Fr

I. INTRODUCTION

The tethered membrane model was originally intro-
duced by Kantor, Kardar, and Nelson [1] as a general-
ization of linear polymers and as a prototype for mod-
els of real two-dimensional systems [2]. In its simplest
version, a tethered membrane consists of particles that
occupy the vertices of a D dimensional lattice (normally
D = 2) and which fluctuates in d dimensions. In the
absence of self-avoidance such membranes are crumpled
with a radius of gyration R, that scales with the lin-
ear dimension of the network as Ry, ~ (InL)'/2. In the
thermodynamic limit L — oo, Rg & L20¢, where o is a
measure of the diameter of the particles, indicating that
self-avoidance will play an important role for any d, in
contrast to linear polymers which become ideal above
an upper critical dimension d,. = 4. Indeed, a large
body of numerical work [3-7] has led to the generally
accepted conclusion that self-avoiding membranes with-
out compensating long-range attractive forces are flat for
the most interesting case d = 3 no matter how small the
self-avoidance. This is in marked contrast to Flory the-
ory [1] which predicts an isotropically crumpled phase
R, ~ L*F with vp = (D + 2)/(d + 2). An appealing
physical argument [6] for the existence of the flat phase
is that tethering, together with self-avoidance generates

an effective bending rigidity that is large enough to sta-

bilize the flat phase. However, one would expect that
by decreasing the hard core diameter [3] or diluting the
membrane [7,8] one could decrease this effective bending
rigidity sufficiently to induce a transition to the crum-
pled phase. To date all efforts to attain this crumpled
phase for membranes with purely repulsive interactions
in d = 3 have failed.

While computer simulations for the three-dimensional
case seem to be generally consistent, it is still of inter-
est to explore the complete phase diagram of tethered
membranes and, in particular, to determine whether or
not a crumpling transition occurs in higher dimensions.
In this context, there are a number of theoretical pre-
dictions based on different approximations. Goulian [9]
and Le Doussal [10] have predicted that the flat phase
is stable for d < 4 on the basis of a variational approx-
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imation. Guitter and Palmeri [11], on the other hand,
have conjectured that d = 3 is the upper limit for the
existence of the flat phase for the case of long-range re-
pulsive interactions. Le Doussal and Radzihovsky [12]
have constructed a self-consistent theory of the flat phase
that predicts the transverse roughening exponent ¢ in all
dimensions as well as a universal negative Poisson ratio
independent of the embedding dimension d.

To date, there has been one other simulation of teth-
ered membranes in higher dimension. Grest [13] car-
ried out molecular dynamics calculations for self-avoiding
membranes in d = 4, 5, 6, and 8. He concluded that
self-avoiding membranes are flat in d = 4 and crumpled
in d > 5. The tethering potential used in these simu-
lations produces a rather rigid membrane — one that
should have a large induced bending rigidity and should
therefore favor the flat phase. In our calculations, which
are complementary to those of Ref. [13], we have used a
less rigid tethering potential and have varied the effective
hard-core diameter over a large range in d = 4 in an effort
to find a crumpled phase. We have also attempted to re-
duce the effective bending rigidity in a number of other
ways. Our results are entirely consistent with those of
Ref. [13]. We find no evidence of a crumpled phase in
d = 4 and no evidence of a flat phase in d = 5. Thus it
seems that in dimensions in which both fixed points exist,
one or the other always has the entire parameter space
as its basin of attraction, as predicted by the theories of
[9] and [10].

The structure of this paper is as follows. In Sec. II
we describe the model that we have used and the simula-
tions. Section III contains the results of the calculations
and we conclude in Sec. IV with a brief discussion.

II. MODEL AND COMPUTATIONAL METHOD

The membranes that we simulated consisted of hexag-
onal sections of a triangular lattice [14]. The number
of particles, NV, is related to the longest diameter of the
hexagon, L, through N = (3L2+1)/4. Nearest neighbors
are tethered to each other by the attractive potential
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Van(rij) = —0.5kR3 In(1 — r% /R}) (2.1)

and self-avoidance is imposed by the repulsive potential

rra=e[()" ()

for 0 < ry; < 21/65. The potential (2.2) acts between
any pair of particles for a fully self-avoiding membrane.
In most of the calculations we have taken ko?/e = 4,
where the reference length 0y = 1 defines the basic unit
of length. We have also typically taken Ry = 4.00, and
fixed the average temperature at kgT /e = 1. The effec-
tive hard-core diameter o is a variable parameter that
controls the degree of self-avoidance with o = 0 corre-
sponding to a phantom network. In our four-dimensional
simulations, we varied o over the range 0.1 < o < 1. For
this range of o, the ratio of turning points rmin/Tmas
for a nearest neighbor pair, with average kinetic energy,
varies from 0.10 at ¢ = 0.1 to 0.66 at ¢ = 1.0. In
the simulations of Ref. [13], the parameters used were
Ry = 1.500, ko3 /e = 30, and o = 1.0. For these parame-
ters Tomin /Tmas = 0.88, i.e., the membrane is considerably
stiffer than any of the ones simulated here.

In the four-dimensional case, we reduced the stiffness
and therefore the effective bending rigidity in two other
ways. First, we imposed self-avoidance only between par-
ticles that are not nearest neighbors on the network. This
allowed nearest neighbors to interpenetrate and more
folding of adjacent triangles. Since this change is purely
local, this model should exhibit the same phases in the
thermodynamic limit as a fully self-avoiding membrane.
Second, we also studied the four-dimensional version of
a model of Kantor and Kremer [15]. In this model self-
avoidance is imposed only up to a certain maximum dis-
tance and, for a fixed such distance, the membrane is
phantom in the thermodynamic limit. By studying the
behavior of membranes as a function of the cutoff dis-
tance one can obtain some insight into whether or not
a crumpling transition exists in fully self-avoiding mem-
branes.

Our simulations were constant energy molecular dy-
namics calculations, with the equations of motion inte-
grated using a standard Verlet algorithm, with a typical
time step 7 = 0.0050 \/m/e. For this value of 7, energy is
conserved to better than one part in 10* over the duration
of a run. These runs were generally at least 2 x 108 time
steps long, and the average run was several this length.
Every 200 time steps the inertia tensor

1 _ _
lap = D (ria — Ta) (rip — 75)

(2.2)

(2.3)

was diagonalized and the eigenvalues ordered from small-
est, A\; to largest A\y. To verify that the samples were
well equilibrated and that we had statistically indepen-
dent data, we calculated autocorrelation functions of
these eigenvalues. For the largest membranes simulated,
L =71 or N = 3781, the relaxation time was roughly
2000 time steps. Thus, even in the worst case, we had
several hundred statistically independent configurations.
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III. RESULTS

We begin with selected results for fully self-avoiding
membranes in d = 4. In Fig. 1 we show the eigenvalues
Aj for ¢ = 1 and system sizes ranging from L = 7 to 71.
These are the stiffest of the membranes simulated and
the data show quite clearly the anisotropy of these mem-
branes. The two largest eigenvalues can, for large L, be
well fitted by the functional form A3 4 ~ L%, whereas the
two smallest eigenvalues scale with a distinctly smaller
exponent: 2¢ = 21y 2 = 1.65 (Fig. 1). These results are
entirely consistent with those of Grest [13] who found
¢ = 0.84 + 0.05 and v = v34 = 0.95 £ 0.05. We also
calculated the Poisson ratio op from fluctuations of the
eigenvalues \; [16] for 7 < L < 41. Over this range of L,
the Poisson ratio is almost independent of L and extrap-
olates to a value of —0.34 at L~! = 0, consistent with
the prediction of Ref. [12] of a universal negative Pois-
son ratio in the flat phase of op = —%, independent of
embedding dimension.

We also simulated membranes with ¢ as small as 0.1.
The considerable crossover effects for the smaller values
of o are illustrated in Fig. 2 where the eigenvalues are
plotted for o = 0.2 for 7 < L < 71. The clear difference
in slope between the straight-line fits to A3 and A4 and
the two smaller eigenvalues is evident. We can quantify
this difference by calculating effective exponents

11In{X;(L1)/A;(L2)}
2 In{L,/L,}

Vjefrf(L1,L2) = (3-1)

These exponents are plotted in Fig. 3 as a function of
1/L, where L, is the larger of two successive system sizes.
Although the data are noisy, it is quite clear that the two
larger exponents are essentially equal to each other and
will extrapolate to a value close to 1 for L — oco. The
Poisson ratio op is also shown on this plot; again, it
extrapolates to a value close to the predicted op = —%
(12].

In Fig. 4 we show the “aspect ratio” A; = A;/A4 as
function of ¢ for various system sizes. The curves drawn
through the data points are merely guides to the eye. At
o = 0, which corresponds to the isotropically crumpled
phantom membrane, A; increases as function of L, just
as in d = 3 [4,5]. The points at which the various curves
intersect are an indicator of where the crossover from

=1.0

Eigenvalues, d=4, o
LX\
\%

10 L 100

FIG. 1. Eigenvalues of the inertia tensor (2.3) for ¢ = 1.0
in d = 4. Uncertainties are roughly the size of the data points.
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FIG. 2. Eigenvalues of the inertia tensor (2.3) for o = 0.2 a3
in d = 4. The straight line fits yield exponents v3,4 ~ 0.75 1 '

and v;2 =~ 0.5. Note, however, that there is considerable
curvature in the data.
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FIG. 3. Effective exponents from (3.1) for the data of Fig.
2 as function of L™!. Also shown is the Poisson ratio op
determined from fluctuations of the eigenvalues of the inertia
tensor [16] and a straight line fit that indicates an asymptotic
value op(00) =~ —0.35.

FIG. 4. Plot of the anisotropy A; = A;/)\4 as function of
o for various L in d = 4.
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FIG. 5. The radius of gyration of membranes in d = 4 with
finite-range repulsive interaction. The lower curve is typical of
phantom membranes, the upper of self-avoiding membranes.
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FIG. 6. Estimate of the critical hard-core radius for the
transition from crumpled to flat behavior as a function of
n~!, where n is a measure of the range of self-avoidance (see

text).
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FIG. 7. Eigenvalues of membranes with 6 =1.0ind =5
along with fits to the form \; = a; L%°.
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FIG. 8. Effective exponents from (3.1) for the largest and
smallest eigenvalues of Fig. 7. The straight line fits yield
v1(00) = 0.82, vs(o0) ~ 0.83.

crumpled to flat phase takes place.

As mentioned in Sec. II, we also reduced the effec-
tive bending rigidity of membranes in d = 4 in order
to gain more insight into their behavior. In particular,
we studied a model of Kantor and Kremer [15] in which
self-avoidance is strictly of finite range. In this model,
self-avoidance is imposed between a given particle and
all other particles within a certain range on the two-
dimensional network. This range can be parametrized
by the quantity n which denotes the number of particles,
including the central particle, that are fully self-avoiding.
Thus for n = 7 a given particle interacts only with its six
nearest neighbors, for n = 13 with the two nearest neigh-
bor shells, etc. We carried out simulations for systems
of up to size L = 41 for n = 7, 13, 19, 37, 91 and for
0.025 < /Ry < 0.75. Clearly, in the thermodynamic
limit at fixed n, this model must behave like a phan-
tom membrane and an ad hoc criterion is needed to infer
the behavior of the system of interest, which is attained
when n — L, L — oo. In Ref. [15] the authors defined
an effective “critical diameter” o.(n) in d = 3 by lo-
cating a point at which the largest eigenvalue increases
sharply when plotted as function of the variable on? and
attempted to extrapolate this value of o to n = co. We
have chosen a different criterion. When n is sufficiently
small, compared to the available range of L, the effec-
tive scaling exponent of the radius of gyration decreases
with increasing system size, consistent with R; ~ InL.
Conversely, if n is large enough to make the system flat
over a range of L, the effective exponent is constant or
increases. These two types of behavior are shown in Fig.
5 for the two cases n = 13 and 91. We estimated o.(n)
from the value of n at which the effective exponent be-
gins to increase [17]. This function is plotted in Fig. 6
as function of n~!. The data indicate a limiting value
of o.(0) = 0, consistent with the results for fully self-
avoiding membranes.

We now turn to the five-dimensional case. We simu-
lated fully self-avoiding membranes for a range of o and,
asind =4, for 7 < L < 71. The behavior of these mem-
branes contrasts sharply with the four-dimensional ones.
In Fig. 7 we plot the eigenvalues for o = 1, i.e., a rather
stiff membrane. There are clear indications of crossover
in the three smaller eigenvalues and the straight lines
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FIG. 9. Anisotropy A; = A\1/As ind =5 and A; = A1/
in d = 4 as function of L™1.

which are fits of the data to the function A\; = a;L*®
provide a very adequate fit at large L. Further evidence
for the conclusion that five-dimensional membranes are
isotropically crumpled is presented in Fig. 8 in which
the effective exponents (3.1) for the largest and smallest
eigenvalues are plotted as function of L~!. The straight
line fits have intercepts at L=! = 0 of 0.82 and 0.83, re-
spectively. These estimates are consistent with the result
v = 0.85 £ 0.05 of Ref. [13] and with our own results for
different values of o. Finally, in Fig. 9 we illustrate the
striking difference between d = 4 and 5 by plotting the
aspect ratio A1(L) = Amin/Amaz as function of L~ for
two values of o ind =5 and for c = 0.2ind = 4. It is
clear from this figure that A;(oco) is finite in d = 5 but
that it is likely equal to zero in d = 4.

IV. CONCLUSION

In this paper, we have reported the results of extensive
molecular dynamics simulations of self-avoiding tethered
membranes in d = 4 and 5. Our main conclusions are
that, in any embedding dimension, such membranes are
either flat or crumpled in the thermodynamic limit and
that in the absence of long-range attraction between the
particles on the network there is no crumpling transition.
This is consistent with previous numerical work [13] and
with some approximate analytical results [9,10]. Our re-
sults provide further evidence that the lower critical di-
mension for the crumpled phase is 4 < d;. < 5, which
disagrees with the conjecture of Ref. [11] of d;. = 3. We
have also calculated the Poisson ratio for membranes in
d = 4 and find that it is generically negative, insensitive
to the size of the hard-core diameter and quite close to
the universal value predicted by Ref. [12] for membranes
in the flat phase.
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